Geometrical versus rheological transient creep closure in a salt cavern
نویسندگان
چکیده
منابع مشابه
Universal scaling in transient creep.
We present experimental evidence that pressure solution creep does not establish a steady-state interface microstructure as previously thought. Conversely, pressure solution controlled strain and the characteristic length scale of interface microstructures grow as the cubic root of time. Transient creep with the same scaling is known in metallurgy (Andrade creep). The apparent universal scaling...
متن کاملRheological analysis of creep in hydrogenated amorphous carbon films
We present a nanoindentation study to detect time-dependent deformations in non-polymeric hydrogenated amorphous carbon films. When the bonded hydrogen content increases from 18 to 36 at.%, as measured by Fourier transform infrared spectroscopy, we find that the film becomes less graphitic and softer. Moreover, its hardness shows a larger sensitivity to strain rate and the film with the higher ...
متن کاملPresenting an experimental creep model for rock salt
During the recent decades, the design and construction of underground spaces into rock salt have been particularly regarded for storing petroleum fluids, natural gas, and compressed air energy, and also for disposing nuclear and chemical wastes. The rock salt hosting such spaces will be subjected to various types of monotonic/cyclic, short-term/long-term stresses during the construction and/or ...
متن کاملCreep closure of channels in deforming subglacial till
We examine theoretically the creep closure of subglacial tunnels cut into basal till, generalizing Nye's classical analysis of tunnel closure in glacier ice to rheologies in which the creep rate depends on effective pressure (the difference between total pressure and pore-water pressure). The solutions depend critically on a dimensionless permeability parameter. For the appealingly simple Boult...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mécanique
سال: 2017
ISSN: 1631-0721
DOI: 10.1016/j.crme.2017.09.002